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HIGGS AT 125 GEV?

• Evolution of 
Higgs quartic 
coupling

• SM meta-stable 
up to Planck 
scale
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Figure 1: RG evolution of the Higgs self coupling, for di↵erent Higgs masses for the central value of mt

and ↵s, as well as for ±2� variations of mt (dashed lines) and ↵s (dotted lines). For negative values

of �, the life-time of the SM vacuum due to quantum tunneling at zero temperature is longer than the

age of the Universe as long as � remains above the region shaded in red, which takes into account the

finite corrections to the e↵ective bounce action renormalised at the same scale as � (see [11] for more

details).

2 Stability and metastability bounds

We first present the analysis on the Higgs instability region at zero temperature. We are

concerned with large field field values and therefore it is adequate to neglect the Higgs mass

term and to approximate the potential of the real field h contained in the Higgs doublet H =

(0, v + h/
p
2) as

V = �(|H|2 � v2)2 ⇡ �

4
h4 . (1)

Here v = 174 GeV and the physical Higgs mass is mh = 2v
p
� at tree level. Our study here

follows previous state-of-the-art analyses (see in particular [9, 11, 12]). We assume negligible

corrections to the Higgs e↵ective potential from physics beyond the SM up to energy scales of

the order of the Planck mass. We include two-loop renormalization-group (RG) equations for all

the SM couplings, and all the known finite one and two-loop corrections in the relations between

3

Elias-Miro, Espinosa, Giudice,
Isidori, Riotto, Strumia, 2011
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What about:

Dark Matter?

Neutrino Masses?

Baryogenesis?
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OUTLINE

• Introduction

• Non-Equilibrium Quantum Field Theory Approach

‣ Thermal corrections

‣ Flavor effects

• Conclusions

based on:
NPB 838 (2010) 1-27
NPB 843 (2011) 177-212 
with M. Beneke, B. Garbrecht, C. Fidler, M. 
Herranen
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SEE-SAW MODEL OF NEUTRINO MASSES

• Right-handed neutrinos     are neutral singlets

• Can have Majorana mass term:

• Mass matrix:

• Eigenvalues: 

 Ni

✓
0 Yiv

Y ⇤
i v Mi

◆

Minkowski 1977,  Yanagida 1979, ...

L =
1
2
⇥̄Ni(i⇤/�Mi)⇥Ni + ⇥̄�i⇤/⇥� � Y �

i ⇥̄��
†PR⇥Ni � Yi⇥̄NiPL�⇥�

�� � |Y 2| v
2

M1

�+ ⇡ M1



Neutrino masses done!

What about Baryogenesis?
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HOW TO GENERATE A BARYON 
ASYMMETRY?

Sakharovs conditions (1967):

• Baryon number violation

• CP violation

• Departure from equilibrium

SM:
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SEE-SAW MODEL OF NEUTRINO MASSES

• Right-handed neutrinos     are neutral singlets

• Can have Majorana mass term:

• Majorana mass violates lepton number

• Out of equilibrium decay of     if couplings satisfy 

 Ni

Minkowski 1977,  Yanagida 1979, ...

L =
1
2
⇥̄Ni(i⇤/�Mi)⇥Ni + ⇥̄�i⇤/⇥� � Y �

i ⇥̄��
†PR⇥Ni � Yi⇥̄NiPL�⇥�

new CP violation

N1

�N1 �
X

|Y1i|2M1 < H
��
T⇡M1
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HOW TO GENERATE AN ASYMMETRY?

Sakharovs conditions:

• Baryon number violation

• CP violation

• Departure from equilibrium

SM + See Saw





Leptogenesis Fukugita & Yanagida, 1986
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USUAL WAY TO PREDICT ASYMMETRY:

• Calculate CP asymmetry in decays

• Plug into Boltzmann equation

• Solve (with approximations)

N1
!

h

Nj
!

h

N1 N1 h

!

��f⇥�⇥̄ = CD[f⇥�⇥̄] + CS [f⇥�⇥̄]

⇥
⇣ ⌘⇤

e.g. Pedestrian: Buchmuller, di Bari, Plumacher, 2000
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Figure 3: Comparison analytical (dashed lines) and numerical (solid lines) results for

heavy neutrino production and B − L asymmetry in the case of zero initial abundance,

N i
N1

= 0, for weak washout (top) and strong washout (bottom); |ε1| = 10−6.

13

e.g. Covi et al, 1996
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VALID APPROACH?

• Calculate CP asymmetry in decays

• Plug into Boltzmann equation

• Solve (with approximations)

N1
!

h

Nj
!

h

N1 N1 h

!

��f⇥�⇥̄ = CD[f⇥�⇥̄] + CS [f⇥�⇥̄]

⇥
⇣ ⌘⇤

e.g. Pedestrian: Buchmuller, di Bari, Plumacher, 2000
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Figure 3: Comparison analytical (dashed lines) and numerical (solid lines) results for

heavy neutrino production and B − L asymmetry in the case of zero initial abundance,

N i
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= 0, for weak washout (top) and strong washout (bottom); |ε1| = 10−6.
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Quantum Effect

Classical Equation

something missed?
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OUTLINE

• Introduction

• Non-Equilibrium Quantum Field Theory Approach

‣ Thermal corrections

‣ Flavor effects

• Conclusions/Outlook

based on:
NPB 838 (2010) 1-27
NPB 843 (2011) 177-212 

earlier work:
Buchmuller, Fredenhagen
Riotto, de Simone
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QUANTITIES OF INTEREST

• Equilibrium 
distributions:

•     distribution: 

• Lepton/anti-lepton distributions:

• Derive time evolution equations for 

f eq
B (E, T ) =

1

eE/T � 1
feq
F (E, T ) =

1

eE/T + 1

fN1 � f eq
N1

= �fN1
Deviation from 
th. equilibrium

N1

�f` = f` � f¯̀ Lepton asymmetry

�f` , �fN1
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WHERE DO     APPEAR IN FIELD THEORY?

• Mode expansion for free scalar field:

• Expectation values of two point functions:

• Start with EOM for two point Greens functions

fX

�(x) =

Z
d

3
k

(2⇡)3
1

2E
k

⇣
ake

ikx + a

†
ke

�ikx

⌘

iS`(x, y) = h `(x) ̄`(y)i iSN1(x, y) = h N1(x) ̄N1(y)i

FT h�†(x)�(y)i ⇠ ha†kaki ⇠ f(k)
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NEQFT FOR LEPTOGENESIS

• Dyson-Schwinger equation               

i⇥/uSab(u, v) = a�ab�
4(u� v) +

X

c

Z
d4w�ac(u, w)Scb(w, v)

1PI self energies

n`(t) =
Z

d3kf`(t, k)

d

d�
fN1(k) = D(k)

d

d�
(n� � n̄�) = W + S .

Ni

Nj
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OUT OF EQUILIBRIUM?

• In th. equilibrium:

• Out of equilibrium:
  

• Separate microscopic    and macroscopic     scales 
using “Wigner transformation” 

iS`(x, y) = iS`(x� y)

iS`(x, y) = iS`(X, r)

X = 1
2 (x+ y) r = x� y

Xr

iS(X, k) =

Z
d4reikriS(X, r)
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KADANOFF BAYM EQUATIONS

• After Wigner transformation:
 

• Gradient expansion:  

i⇥/uSab(u, v) = a�ab�
4(u� v) +

X

c

Z
d4w�ac(u, w)Scb(w, v)

(�ik/+ @/X) iS(X, k) + ie�i⇧{⌃h}{iS(X, k)} = C

e�i⇧ ! 1

(k/� ⌃h)iS(X, k) = 0

@/X iS(X, k) = C

Constraint equation: Quasi-
particle poles

Kinetic equation: Time evolution
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LEFT HAND SIDE

• From constraint equation:

• Plug into kinetic equation:

• Take Dirac trace and integrate over     :

@/X iS(X, k) = C

iS(X, k) = k/2⇡�(k2)
⇥
✓(k0)f(X,k)� ✓(�k0)(1� f̄(X,k))

⇤

k0

@

@Xµ
f(X,k) =

Z
dk0C
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QUANTUM BOLTZMANN EQUATIONS

• Spatial homogeneity: 

• Expansion of universe:            (conformal time)

• Quantum Boltzmann equations

d

d�
fN1(k) = D(k)

d

d�
(n� � n̄�) = W + S .

t ! ⌘

@Xµ ! @X0 = @t

n`(t) =
Z

d3kf`(t, k)
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OUTLINE

• Introduction

• Non-Equilibrium Quantum Field Theory Approach

‣ Thermal corrections

‣ Flavor effects

• Conclusions/Outlook
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Appendix: Calculation of the Self Energies 119

Ni Nj

!

H Ni Nj

!

H

(a) (b)

! !

Ni

H ! !

Nj

Ni

(c) (d)

Figure 5.6: Diagrammatic representation of the one-loop contributions to the
neutrino self energies, Figures (a) and (b), and the one loop (c) and two loop (d)
contribution to the lepton self energy. The two loop wave-function correction in
Figure 5.1 results from inserting (b) for the propagator of Ni in (c).

However, so far there has been no complete derivation and solution of the equa-
tions describing the standard scenario of leptogenesis within the CTP framework.
The present work may be viewed as a self-consistent leading-order approxima-
tion in this framework, which serves as a starting point for investigating further
corrections and variations.

5.8 Appendix: Calculation of the Self Energies

In this section we sketch the derivation of the neutrino one-loop self energy (5.13)
and the one- and two-loop self energies for the leptons, (5.14) and (5.61).

The Feynman diagrams contributing to these self energies are shown in Fig-
ure 5.6(a)-(d). The required CTP components Σab are obtained by assigning the
positions a and b to the vertices connected to external legs, while all internal
vertices have to be summed over the possible positions on the upper and lower
branch of the CTP contour.

NOW THE COLLISION TERM

•      decay/inverse decay
decay rate  

• CP source

d

d�
fN1(k) = D(k)

d

d�
(n� � n̄�) = W + S .

N1

Appendix: Calculation of the Self Energies 119

Ni Nj

!

H Ni Nj

!

H

(a) (b)

! !

Ni

H ! !

Nj

Ni

(c) (d)

Figure 5.6: Diagrammatic representation of the one-loop contributions to the
neutrino self energies, Figures (a) and (b), and the one loop (c) and two loop (d)
contribution to the lepton self energy. The two loop wave-function correction in
Figure 5.1 results from inserting (b) for the propagator of Ni in (c).

However, so far there has been no complete derivation and solution of the equa-
tions describing the standard scenario of leptogenesis within the CTP framework.
The present work may be viewed as a self-consistent leading-order approxima-
tion in this framework, which serves as a starting point for investigating further
corrections and variations.

5.8 Appendix: Calculation of the Self Energies

In this section we sketch the derivation of the neutrino one-loop self energy (5.13)
and the one- and two-loop self energies for the leptons, (5.14) and (5.61).

The Feynman diagrams contributing to these self energies are shown in Fig-
ure 5.6(a)-(d). The required CTP components Σab are obtained by assigning the
positions a and b to the vertices connected to external legs, while all internal
vertices have to be summed over the possible positions on the upper and lower
branch of the CTP contour.

! !

Ni
Nj

�N1
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CP SOURCE

• Source term in hierarchical limit (              ):

S = 3 Im[Y 2
1 Y ⇤

2
2]

✓
�M1

M2

◆ Z
d3k0

(2⇥)32 ⇤k0
�fN (k0) �Nµ(k0)�µ

N (k0)

M2 �M1

fN � feq
N

no asymmetry in 
equilibrium

�µ
N (k) =

Z

p,q
�4(k � p� q) pµ

⇣
1� f eq

⇥ (p) + f eq
� (q)

⌘

finite density corrections

In vacuum QFT: �µ
N (k) =

kµ

16�
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THERMAL EFFECTS: WEAK WASHOUT

blue: thermal initial       density
red: zero initial       density

N1

N1

0.1 1 10

10!11

10!10

10!9

10!8

z"M1!T

"Y l"

can be sizab
le!
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THERMAL EFFECTS: STRONG WASHOUT

0.1 1 10

10!11

10!10

10!9

10!8

z"M1!T

"Y l"

blue: thermal initial       density
red: zero initial       density

N1

N1
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OUTLINE

• Introduction

• Non-Equilibrium Quantum Field Theory Approach

‣ Thermal corrections

‣ Flavor effects

• Conclusions/Outlook
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LEPTON FLAVORS

• Neutral and charged Lepton Yukawa couplings in 
general not aligned

• Leptogenesis usually dominated by     decays

• Decay into linear combination of  

L = Yia⇤̄Ni⇥⇤�a + hab⇤̄Ra⇥
†�⇤�b + h.c.

N1

e, µ, �

N1 ! ⇥⇤ , ⇤ ⇠ �e⇤e + �µ⇤µ + �� ⇤�

Barbieri et al, 2000; Endoh et al, 2004;
Abada et al, 2006; Nardi et al, 2006;
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MODIFICATION OF WASHOUT RATES

• Assume tau Yukawa in thermal equilibrium

•    Projected onto states    and     by flavor sensitive 
interactions (denote as      )

• Boltzmann E:

• Small washout in one flavor can largely increase the 
asymmetry (over 100%)

` `⌧ `?

d

d�
�n�i = Wi + S�

`1,2
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DEPENDENCE ON LEPTOGENESIS SCALE

• Expansion of Universe:

• Charged Higgs Yukawa interactions
in equilibrium below 

• Now three rates are relevant: 

• Basis dependent treatment not sufficient

H = 1.66
p

g?
T 2

Mpl

�fl / h2
⌧T

1012 GeV

H, �N1 , �fl
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NEW TERMS IN EVOLUTION EQUATION

• Promote propagators to flavor matrices:

• Flavor sensitive (thermal) masses: Oscillations!

• Flavor sensitive interactions: Dissipation

iS`(k) ⇠
✓
f11(k) f12(k)
f21(k) f22(k)

◆

@

@⌘
�n±

`ab = ⌥�!e↵
`ab�n

±
`ab � [W, �n±

` ]ab ± Sab � �±fl
`ab
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FLAVOR BLIND GAUGE INTERACTIONS

• Fast, always in equilibrium

• Enforce kinetic equilibrium, lepton anti-lepton pair 
annihilation

• Physical picture: Assume n+
eq = n�

eq = 1000

Asymmetry: 6

n+ = 1006 n+ = 1003

Asymmetry: 6

n� = 1000 n� = 997

�bl

kinetic equilibrium

��bl(�n+
`ab + �n�

`ab)
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FULL EOM
@

@⌘
�n±

`ab = ⌥�!e↵
`ab�n

±
`ab � [W, �n±

` ]ab ± Sab � �±fl
`ab

��bl(�n+
`ab + �n�

`ab)
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SUPPRESSION OF OSCILLATIONS

• Toy Model
 

• Flavor blind interactions                     (          )

• Oscillations                            (            )

• Last term enforces

• Oscillations suppressed by large 

�bl ⇠ g4
2 T

kinetic 
equilibrium

�� ⇠ h2
⌧ T << �bl from thermal

masses

�bl

d(�+)/dt = �i⇥ �+ � �bl[�+ + ��]

d(��)/dt = +i⇥ �� � �bl[�+ + ��]

�+ = ��� +O(⇥/�bl)��

Note: Not Q
uantum-Zeno!



Pedro Schwaller Flavored Leptogenesis Fermilab, 2012

FLAVORED EVOLUTION EQUATION

• Evolution equation:

• Total asymmetry: 
 

@�n`ab

@⌘
= � {W,�n`}ab + 2Sab � �fl

`ab

Tr(�n`)



NUMERICS (CHARGED LEPTON FLAVOR BASIS)
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• Total asymmetry 
as function of the 
Leptogenesis scale

• Unflavored: 

• Fully Flavored:

Scenario B

1010 1011 1012 1013 1014
0

2.!10"9
4.!10"9
6.!10"9
8.!10"9
1.!10"8
1.2!10"8

M1!GeV"
#Y 11#

Y 2
2#

IMPORTANCE OF FLAVOR

blue: full solution
red: unflavored 
green: fully flavored 

M1 > 1013

M1 < 1011
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CONCLUSIONS

• Consistent framework to derive evolution equations 
for lepton (and other) asymmetries

‣ Finite density corrections

‣ Basis independent equation for flavored leptogenesis

‣ Suppression of flavor oscillations

‣ Precise description of “intermediate” regime

‣ Systematic calculation of actual leading order interaction rates
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Thank you!
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DEPARTURE FROM TH. EQ.

•       distribution in thermal equilibrium

• If decay rate is close to or smaller than expansion rate 
of the universe: 

• Note: Non-thermal initial conditions also possible

N1

f eq
N1

(k) =
1

e
p

k2+M2
1 /T + 1

M1�T�! e�M1/T

�fN1 6= 0
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WHEN ARE FLAVOR EFFECTS IMPORTANT?

• Three regimes (neglecting muon, electron Yukawas and 

assuming that flavors are not aligned)

• Unflavored: Single flavor approximation is good

• Fully Flavored: Off-diagonal densities can be neglected

• Intermediate: Full evolution equation needs to be 
solved
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SUPPRESSION OF OSCILLATIONS

• Flavor blind interactions                     (          )

• Oscillations                            (            )

• Toy
Model:

• Last term enforces

• Oscillations suppressed by large 

�bl ⇠ g4
2 T kinetic 

equilibrium

�� ⇠ h2
⌧ T << �bl from thermal

masses

�bl

d(�+)/dt = �i⇥ �+ � �bl[�+ + ��]

d(��)/dt = +i⇥ �� � �bl[�+ + ��]

�+ = ��� +O(⇥/�bl)��
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NONEQUILIBRIUM QFT

• Conventional QFT: Calculate “in - out” correlators (S-
matrix elements)

• NEQFT: Know the “in” state      , want to predict the 
time evolution of operator: 

�t|O|t⇥ = Tr[�(t0)U†(t, t0)OU(t, t0)]

�(t0)

in

⇥A|B⇤
out

= ⇥A|U(�t, t)|B⇤t!1 = ⇥A|S|B⇤
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CTP FORMALISM

• Instead of “in-out” correlators: Calculate “in-in” 
expectation values

• Possible using conventional QFT methods if we let 
time coordinate on Closed Time Path

• Fields get additional index            that indicates the 
position of the time coordinate

22 T. Gasenzer

Fig. 9. (Color online) Schwinger-Keldysh closed time path C. The green dots indicate the times x0

and y0 for an example two-point function G(x, y), see text. The branches are drawn above and below
the time axis only in order to make them separately visible.

This forms the central result that the 2PI effective action is given, besides the terms (64), by
a series of all closed 2PI diagrams which can be formed from the full propagator G, the bare
vertices defined by the classical action, and at most two external field insertions φ.

The expansion of the 2PI part Γ2[φ, G] up to 3-loop order, for the classical action defined
in Eq. (55) is shown in Fig. 8. We emphasise that, although the diagrams in this expansion are
proportional to a power of the bare coupling g, truncations of the series can not be regarded as
perturbative in g since the propagator G itself represents an expansion to infinite order in the
coupling. The reason is that the stationarity condition for G, Eq. (63) yields a perturbatively
truncated expression for the inverse of G.

In order to arrive at a set of dynamic equations we need to discuss in more detail the
implementation of the initial value problems we have in mind.

3.3 Schwinger-Keldysh closed time path

We assume that the many-body state is initially, i.e., at time t = t0, given by some general
(mixed) density matrix ρ(t0) The time evolution of the expectation value of an operator O is
then given as

〈t|O|t〉 = Tr
[
ρ(t0)U

†(t, t0)OU(t, t0)
]
, (67)

where U(t, t′) = T exp{−i
∫ t
t′ dt′′ H(t′′)/h̄} denotes the time evolution operator as obtained

from the Hamiltonian H(t).
The operators O relevant for us, i.e., the n-point correlation functions, are products involv-

ing, in the Heisenberg picture, operators evaluated at different times. In the Schrödinger picture
this implies additional time evolution operators between these factors. Consider, for instance,
the two-time Green function,

〈TCΦa(x)Φb(y)〉c = Tr
[
ρ(t0)TC U †(x0)Φa(x)U(x0)U †(y0)Φb(y)U(y0)

]
− disc., (68)

where U(t) ≡ U(t, t0) and the operators are time-ordered in a way which leaves the ordering
within the products U †ΦU invariant. The disconnected part is denoted as ‘disc.’. The product
of different time evolution operators and field operators can be visualised by means of the closed
time path as shown in Fig. 9. Starting at time t0, path sections leading to the maximum time
appearing in the arguments of the field operators indicate time evolutions U . One generically
chooses all times to lie on the + branch. However, different time orderings can be handled
simultaneously by allowing times on the − branch as well and thereby doubling the range
of possible times. Clearly, the two-point Green functions, with times evaluated on either or
both of the two branches, are not completely independent from each other, and one aim of the
discussion in later sections will be to clarify the dependencies. Here we only point out that the
formalism to be developed naturally allows for two-time Green functions G(x, y) and therefore
for Fourier transforms over their relative time x0−y0. These transforms, in turn, are functions of
the frequency which, e.g., for a translationally invariant system, contain information about the
spectral distribution of a particular momentum mode p. Beyond the mean-field approximation,
collisions imply the redistribution of momentum between the particles. These scattering effects
emerge naturally as finite widths in the spectral distribution around the dispersion peak at
ω(p). How these properties emerge from the dynamical theory to be developed is the topic of
Section 4.

�a(t, x)

a = ±

Schwinger, 1961; Keldysh, 1964, ...
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CTP FORMALISM

• Relevant information contained in 2-point functions 
for bosons           and fermions   

• become 2x2 matrices   

• Time evolution from Dyson-Schwinger equation:

S(u, v)�(u, v)

i⇥/uSab(u, v) = a�ab�
4(u� v) +

X

c

Z
d4w�ac(u, w)Scb(w, v)

1PI self energy

✓
G++ G+�

G�+ G��

◆
=

✓
GT G<

G> GT̄

◆
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THE BARYON ASYMMETRY

• The number we have to explain is

• Entropy                           is conserved, related to 
photon density:  

• Measured using BBN (deuterium abundance) and  
CMB anisotropies (temperature fluctuations)

Y�B =
nB � nB̄

s
= (8.75± 0.23)⇥ 10�11

s = g?(2�2/45)T 3

s = 7.04 n�
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THE ELECTROWEAK SPHALERON

•          current is anomalous in the SM

• At         : Tunneling between configurations with 
different          highly suppressed

• At             : In equilibrium

• have                  : 
no proton decay

�B = �L = 3

B + L

T = 0

B + L

T & TeV

inflationary period as a coherent effect of scalar fields which leads to an asymmetry
between quarks and antiquarks after reheating [8]. For the classical GUT baryogenesis
and for leptogenesis the departure from thermal equilibrium is due to the deviation
of the number density of the decaying heavy particles from the equilibrium number
density. How strong this deviation from thermal equilibrium is depends on the lifetime
of the decaying heavy particles and the cosmological evolution. Further scenarios for
baryogenesis are described in [9].

The theory of baryogenesis involves non-perturbative aspects of quantum field
theory and also non-equilibrium statistical field theory, in particular the theory of
phase transitions and kinetic theory. A crucial ingredient is the connection between

Sphaleron bL

bL

tL
sL

sL

cL

dL

dL

uL
νe

νµ

ντ

Figure 1: One of the 12-fermion processes which are in thermal equilibrium in the
high-temperature phase of the standard model.

baryon number and lepton number in the high-temperature, symmetric phase of the
standard model. Due to the chiral nature of the weak interactions B and L are not
conserved. At zero temperature this has no observable effect due to the smallness of
the weak coupling. However, as the temperature approaches the critical temperature
TEW of the electroweak transition, B and L violating processes come into thermal
equilibrium [10].

The rate of these processes is related to the free energy of sphaleron-type field
configurations which carry topological charge. In the standard model they lead to an
effective interaction of all left-handed fermions [3] (cf. fig. 1),

OB+L =
∏

i

(qLiqLiqLilLi) , (2)

which violates baryon and lepton number by three units,

∆B = ∆L = 3 . (3)

3
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CP VIOLATION

• Must be able to distinguish particles from anti-
particles

• In Leptogenesis: CP violated in decays of heavy right-
handed neutrinos:

L

LN1

AH

H

AH

N1 L

H

HA

N1 L

H

HN1

AL

L

AL

N1 H

L

LA

N1 H

H

N1 U3

Q3L

H

L

U3

N1

Q3

H

L

Q3

N1

U3

N1, 2, 3

LL

HH

N1, 2, 3

H

H L

L

N1, 2, 3

H

HL

L

N1

L

H

N1
N2, 3

L

L

H

H

N1 N2, 3

LL

HH

Figure 4: Feynman diagrams contributing to SM thermal leptogenesis.

papers, and plot γD, γHs, γHt, γAs, γAt normalized in units of HnN1
and the ‘subtracted

∆L = 2 scattering rate’ (see appendix A) γsub
N normalized in units of Hnγ.

Decays

The modification in γD is probably the most apparent feature of a comparison between
fig. 5b and 5c, and it occurs because at sufficiently high temperature, the Higgs be-
comes heavier than N1 and the decay N1 → HL becomes kinematically forbidden. For
temperatures in the range where mH − mL < mN1

< mH + mL, there are no two-body
decays involving N1 at all. At higher temperatures the Higgs becomes heavy enough for

10
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CP VIOLATION II

• QM: Observables are expectation values of operators

• Asymmetry: 

• Simplest case: 

No asymmetry since 
�̄ = �

�(N1 � H�+) = |⇥N1|Hint|H�+⇤|2 = |A|2

A = h1A0

Ā = h⇤
1A0

YL =
�� �̄

�+ �̄
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CP VIOLATION III

• Add one loop correction

• Asymmetry proportional to interference term

• Note: Requires complex couplings and complex 

A = h1A0 + h⇤
1(h2)

2A1

Ā = h⇤
1A0 + h1(h

⇤
2)

2A1

YL / =(h1h1h
⇤
2h

⇤
2)=(A0A1)

A1


